【世界之最/世界之謎/未解之謎:數學模型竟可顯示恐怖襲擊是永恆的】
【標題】:未解之謎:數學模型竟可顯示恐怖襲擊是永恆的
【內容】:國際先驅導報文章隨著倫敦爆炸案成為世界矚目的焦點,一項研究聲稱,當代恐怖襲擊遵循一種數學模型,並且恐怖襲擊可能將成為現代所有武裝衝突的最後一種形態。
倫敦大學皇家霍洛威學院的經濟學家邁克·斯帕加特及其同事們說,目前正在伊拉克和哥倫比亞上演的戰爭雖然起因和衝突的形式截然不同,但都具有長期恐怖活動的這種鮮明的標誌性特點。
他們發現,這兩場戰爭的死亡資料遵循一種特有的數學模式,而非主要工國的恐怖襲擊死亡資料也遵循同樣的模式。
50年前,英國數學家路易斯·弗賴伊·理查森發現,將一場戰爭的死亡人數同與這場戰爭規模相當的戰爭發生的次數進行比較,所繪製出來的圖表遵循一種所謂的“冪次法則”,即如按對數形式繪製,那麼所有的資料點都將落在一條直線上。
這一法則表明,死亡人數眾多的大規模戰爭並不頻繁,而小規模戰爭往往更頻繁。
研究人員在研究過去四十年多年的恐怖襲擊時也發現了類似的冪次法則。
但根據國家的不同,冪次法則的具體形式也不同。
西方工業化國家的恐怖襲擊比較少,但一旦發生恐怖襲擊,規模往往很大。
非工業化國家的恐怖襲擊往往規模較小,但發生更加頻繁。
參與該項研究的牛津大學物理學家詹森指出,7月7日倫敦地鐵的炸彈襲擊事件就符合這一統計模式。
倫敦大學的斯帕加特說,伊拉克戰爭起初是大規模軍隊之間的常規衝突,但聯合部隊的出現“使叛亂活動發生分化,現在小規模的襲擊占多數”。
2003年以來,以30天為一個時期來衡量,伊拉克“每次襲擊事件的傷亡人數”呈現一個逐漸變化的冪次法則。
其斜率起初與理查森計算的傳統戰爭的斜率相同,但現在正逐漸接近非西方國家恐怖活動的數值。
斯帕加特的研究小組發現,哥倫比亞政府與眾多左翼和右翼遊擊隊進行了幾十年的戰爭也正接近這個數值。
該研究小組的結論與倫敦經濟政治學院的政治學家瑪麗·卡爾多不謀而合。
卡爾多認為:“目前正在進行的伊拉克戰爭是一種新型戰爭。”
卡爾多指出,人們在預測美國在伊拉克的軍事行動時,認為它屬於在20世紀中葉之前進行的那一類戰爭,也就是兩個國家為爭奪一個地區的控制權而進行的戰爭,這種觀點是錯誤的。
他指出,美國不應把伊拉克戰爭看作是憑藉軍事力量可以取得決定性勝利的戰爭,而應該把它視作不間斷的、會長期持續下去的戰爭。
研究人員由此認為,伊拉克和哥倫比亞的軍隊應該採用不同的戰術。
詹森說:“如果你認為需要以毒攻毒,那麼常規部隊是你最不需要的。
必須改變美國和哥倫比亞的集中進攻的戰術。”
更令人擔心的是,恐怖襲擊式的戰爭似乎會無限期地持續下去。
卡爾多贊同這一觀點,他說,“結束這類戰爭要比發動這類戰爭困難得多。”
【序號】:410
引用:http://tw.18dao.net/%E4%B8%96%E7 ... 8%E6%81%86%E7%9A%84 |